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Abstract
A one-particle non-relativistic quantum mechanical solvable model in two-
dimensional space is given. The Hamiltonian is the sum of kinetic and
interaction parts. Interactions are separable and can be centred at n arbitrary
points of the plane. Conditions for the existence and for the number of bound
states in finite linear chains are formulated in terms of the parameters of the
interactions and intercentre distances. Scattering problems are also considered.
Finally, when the interactions are centred in a single centre, it is shown that the
model remains solvable in the presence of a uniform magnetic field of arbitrary
intensity.

PACS numbers: 02.30.−f, 03.65.Ge, 03.65.Nk, 61.50.Ah

1. Introduction

In the few existing solvable quantum mechanical models for one particle, Hamiltonians based
on the zero-range interactions, also called point interactions or Fermi pseudo-potentials, have
been proved to be fruitful for both mathematical developments and physical applications
[1]. Another solvable model in three-dimensional space, with non-zero-range separable
interactions centred at n arbitrary points has been proposed [2], developed and applied [3–7].
It is the purpose of this paper to show that an analogue model can be formulated and solved in
two-dimensional space. On the one hand, the solution is simpler in two dimensions because
the complexity due to the algebra of angular momentum disappears. On the other hand, the
solution is more difficult in two dimensions because the matrix elements of the free resolvent
involve irregular Bessel functions which have branch cut on the negative real axis, whereas the
spherical Bessel functions occurring in the three-dimensional case do not have such branch
cut. The present model is solvable in the sense that scattering and bound state problems
reduce to the evaluation, or to the numerical search of zeros, or to the diagonalization of finite
matrices whose elements are known analytic functions.
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In addition to the intrinsic interest related to the change of space dimensions, the
formulation of the model in two-dimensional space has a specific interest because it should
allow us to take into account the effect of an exterior uniform magnetic field more easily than in
the three-dimensional case. Magnetic field effects in the framework of zero-range interaction
have been considered recently [8] (see also [9–11]). The main purpose of this paper is to
study the field free case (B = 0). In the last section however, it is shown that in the case of
interactions centred at one point only, the present model is solvable for the arbitrary value of
the uniform magnetic field. The spectrum from the low field limit (linear Zeeman limit) to the
infinite field limit (Landau levels limit) can be determined according to a unique procedure
based on the explicit expression of a partial wave Green function for a charged particle in a
uniform magnetic field in two-dimensional space. Finally, it is needless to say that models in
two-dimensional space are relevant to surface physics.

2. The Hamiltonian

We shall mainly use notations similar to those used for the three-dimensional case [2]. The
two Cartesian coordinates will be denoted by x, y, related to the polar coordinates r, ϕ by
x = r cos(ϕ), y = r sin(ϕ), 0 � r < ∞ and 0 � ϕ < 2π . The Hamiltonian then reads

H = p2
x + p2

y

2M
+

Nc∑
j

Vj = p2

2M
+ V.

Its kinetic part p2/2M will be referred to as H0, the remaining part as V . The interaction Vj is
centred at the point Pj with aj ≡ −−→

OPj . A one-to-one correspondence between the Nc points
Pj and indices j is assumed. Atomic units are used (h̄ = 1, e = 1,Me− = 1). The interaction
Vj is a sum of separable interactions or projectors defined by

Vj =
∑

k

λk
j

∣∣ξk
j

〉〈
ξk
j

∣∣
∣∣ξk

j

〉 = exp(−iaj · p)rk
j

∣∣rk
j ,mk

j

〉
.

The kets
∣∣rk

j ,mk
j

〉
are generalized eigenvectors of the radial position operator r, with eigenvalue

rk
j , and the eigenvector of the angular momentum operator

� = xpy − ypx, (1)

with eigenvalue mk
j . The expression generalized vector means a normalization with a Dirac

distribution. The operator exp(−iaj · p) is the operator which translates the state by the
displacement aj .

The total number of projectors
(∑

j,k 1
)

in the Hamiltonian will be denoted by Np. For
convenient notations, the Greek indices α, β, γ will correspond to a couple j, k. For example
λk

j

∣∣ξk
j

〉〈
ξk
j

∣∣ = λα|ξα〉〈ξα|, rk
j = rα , mk

j = mα . Thus α can vary between 1 and Np.
If T denotes the time reversal operator, the relation

T |rα,mα〉 = (−1)mα |rα,−mα〉 (2)

implies that for a Hamiltonian invariant under time reversal, each Vj must involve
|rα,mα〉〈rα,mα| + |rα,−mα〉〈rα,−mα|.

Each projector is invariant with respect to rotations with respect to its centre Pj since

exp(−iϕ�)|r,m〉 = exp(−iϕm)|r,m〉.
Besides the kets already introduced, we shall need generalized eigenvectors of the position

operator r, of the momentum operator p and of the radial momentum operator p. These vectors
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and their normalization and the relation between them are now summarized. For the sake of
convenience, the indices j, k have been suppressed:

〈r ′m′|r,m〉 = δm′m
δ(r ′ − r)

r
(3)

〈r′|r〉=δ(r′ − r) = δ(x ′ − x)δ(y ′ − y) (4)

〈r′|r,m〉 = δ(r ′ − r)

r

exp(imϕ′)√
2π

(5)

I =
∫ ∞

0
dr r

∞∑
m=−∞

|r,m〉〈r,m| =
∫

d2r|r〉〈r| (6)

|r,m〉 =
∫ 2π

0
dϕ

exp(imϕ)√
2π

|r〉 (7)

|r〉 =
∞∑

m=−∞

exp(−imϕ)√
2π

|r,m〉 (8)

and the same equations with p in place of r, for example 〈p′m′|p,m〉 = δm′m
δ(p′−p)

p
.

Equations (7) and (8) are direct consequences of equations (5) and (6). It remains to give the
relations between the bases involving the momentum and the bases involving the position:

〈r|p〉= 1

2π
exp(ip · r) (9)

〈p|r,m〉 = (−i)mJm(pr)
exp(imϕp)√

2π
(10)

〈r|p,m〉 = imJm(pr)
exp(imϕr)√

2π
(11)

〈rm|p,m′〉 = δm′mimJm(pr). (12)

Jm is the Bessel function regular at the origin as defined in [12]. The constants of normalization
and phase factors on the right-hand sides of equations (10)–(12) are completely determined
by equations (3)–(9) due to the following series [13]:

exp(iz cos(ϕ)) =
∞∑

n=−∞
in exp(inϕ)Jn(z). (13)

For example, equation (10) is obtained as follows:

〈p|r,m〉 =
∫ 2π

0
dϕr

exp(imϕr)√
2π

〈p|r〉

=
∫ 2π

0
dϕr

exp(imϕr)

2π
√

2π

∞∑
n=−∞

(−i)nJn(pr) exp(−in(ϕr − ϕp))

= (−i)mJm(pr)
exp(imϕp)√

2π
.
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3. Solution in terms of matrix elements of the resolvent

It is known (see e.g. [2]) how the bound states problems and scattering problems for a
Hamiltonian which is the sum of H0 and separable interactions reduce to the knowledge of the
matrix elements of the free resolvent,

G0(z) = 1

z − H0
.

Specifically, we need the following matrix elements:

〈r,m|G0(z)|r ′,m′〉 = δmm′

∫ ∞

0
dp p

Jm(pr)Jm(pr ′)

z − p2

2M

(14)

〈r,m| exp(ia · p)G0(z)|r ′,m′〉 = −(−1)m−m′
2M exp(iϕa(m

′ − m))∫ ∞

0
dp p

Jm(pr)Jm′(pr ′)Jm−m′(ap)

p2 − 2Mz
, (15)

with a the vector joining the centre P ′ to the centre P . Equation (14) is obtained by inserting
a closure relation (see equation (6) with p in place of r) and from equation (12). Equation (15)
is obtained from

exp{−ia[cos(ϕa)px + sin(ϕa)py]} = exp(−iϕa�z) exp(−iapx) exp(iϕa�z),

which itself results from the commutation relations

[�z, px] = ipy [�z, py] = −ipx

and from equation (13). The final expression for 〈r,m|G0(z)|r ′,m′〉 is well known and can
be obtained either by explicit evaluation of the integral (for example by using the result of
appendix A) or by solving the differential equation for this partial wave Green function and by
taking into account appropriate boundary conditions. This last method is described elsewhere,
see e.g. [14, 15], and will be used in the last section of this paper for the computation of matrix
elements of the resolvent G0B(z) in the presence of a magnetic field B. For the matrix element
between different centres, the explicit evaluation of the integral by the result of the appendix
can be done in the case a � r + r ′, which is always supposed in this paper. This inequality
corresponds to non-overlapping interactions. From now on, we use the notation pz for the
following square root with the positive imaginary part:

pz ≡ √
2Mz.

When z is negative, pz is thus on the positive imaginary axis. When z is real positive, the
limit limε→0 z + iε has to be taken in the evaluation of integral, where ε is positive. The final
results then are

〈r,m|G0(z)|r ′,m′〉 = δmm′ [−iMπJm(pzr<)H (1)
m (pzr>)] (16)

〈r,m| exp(ia · p)G0(z)|r ′,m′〉 = i(−1)m−m′+1Mπ exp(iϕa(m
′ − m))

H
(1)
m−m′(apz)Jm(rpz)Jm′(r ′pz).

(17)

r< and r> respectively denotes the smallest and greatest value among r, r ′, or their common
value if they are equal. It is stressed that equation (17) is the essential result which allows the
present model to be solvable for the multicentre case. This equation has been obtained as a
particular case of the general property derived in the appendix. H(1)

m is the usual notation [12]
for a solution of the Bessel differential equation, called the Hankel function, irregular at the
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origin, whose asymptotic behaviour is given in the appendix, equation (A.2). For scattering
problems, it will be useful to recall that H(1)

m (z) = Jm(z) + iYm(z) with both Jm(z) and Ym(z)

real for the real positive argument z.
For normalization of bound states, one also needs the matrix elements 〈ξj |G2

0(z)|ξk〉, and
for orthonormalization between different states or consideration of time evolution of wave
packets [7], one also needs the matrix elements 〈ξj |G0(z1)G0(z2)|ξk〉. These matrix elements
can be obtained most simply from the algebraic and analytic identities:

G0(z1)G0(z2) = G0(z2)G0(z1) = −G0(z2) − G0(z1)

z2 − z1

(G0(z))
n+1 = −1

n

∂(G0(z))
n

∂z
.

The derivatives of Bessel and Hankel functions satisfy [12] the relation

Cm−1(x) − Cm+1(x) = 2
d

dx
Cm(x),

with Cm for Jm or H(1)
m . The matrix elements 〈ξj |G2

0(z)|ξk〉 can therefore also be expressed in
terms of Bessel and Hankel functions.

4. Bound states problems

The bound state energies for a finite number of centres, or equivalently the poles on the
negative real axis of the resolvent

G(z) = [z − p2/(2M) − V ]−1,

can be determined [6] as the negative z values for which the determinant of a matrix b(z) of
order equal to the number Nb of projectors are zero. This matrix b(z) is defined by its matrix
elements:

bα,β(z) = δαβ − λβ〈ξα|G0(z)|ξβ〉. (18)

These results follow from the identity G(z) = G0(z) + G0(z)V G(z). The exact normalized
eigenvector of H corresponding to the eigenvalue zu is [7]

|ψu〉 = G0(zu)
∑

α |ξα〉〈ξα|ψu〉√∑
α,β〈ψu|ξα〉〈ξα|G2

0(zu)|ξβ〉〈ξβ |ψu〉
. (19)

The coefficients 〈ξα|ψu〉 appearing in the numerator and in the denominator are the elements
of a column eigenvector associated with the zero eigenvalue of the matrix b(zu). For linear
chains on the x axis, ϕa is zero, and for z < 0 this matrix then is real, so that 〈ξα|ψu〉 can all
be chosen real, this choice being made from now on.

The wavefunction 〈r|ψu〉 is obtained from equation (19) and

〈r|G0(zu)|ξα〉 = 〈r| exp(−iaj · p)G0(zu)r
k
j

∣∣rk
j ,mk

j

〉
= rk

j

exp
(
imϕr−aj

)
√

2π

〈|r − aj |,mk
j |G0(z)|rk

j ,mk
j

〉
.

Let us also recall general results that have been obtained in [6] for the Hamiltonian
Np

H = H0 + λ
∑Nb

α=1 |ξα〉〈ξα|, which are independent of the dimension of space.

• The energy of a bound state is an increasing function of λ.
• There are at most Np bound states.
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• The critical values Np
λk for which a zero energy state exists for a Hamiltonian with Np

projectors interlace the critical values N−1λk for a Hamiltonian with N − 1 projectors.

For the study of conditions for bound states, the small z behaviour of the matrix b(z) will
be needed. In this limit [12, 13],

Jm(z) ∼ s(m)

(
z
2

)|m|

(|m| + 1)
(20)

H
(1)
m	=0(z) ∼ s(m)

(−i

π

)
(|m|)

( z

2

)−|m|
(21)

H
(1)
0 (z) ∼ i

2

π
log(z), (22)

where f (z) ∼ g(z) means that f (z)/g(z) tends to unity in the limit considered, and where
the function s is defined by

s(m) = (−1)
m−|m|

2 . (23)

The small z behaviour of the diagonal elements are thus

bαα(0) = 1 +
Mλαr2

α

|mα| if mα 	= 0 (24)

bα,α(z) ∼ 1 − 2Mλαr2
α log(pzrα) if mα = 0. (25)

For the small z behaviour of non-diagonal elements two cases have to be considered.
First, α = j, k 	= β = j, � (same centre but different projectors). Then for mα 	= 0

bα,β(z) ∼ δmαmβ

Mλβrαrβ

|mα|
(

r<

r>

)|m|
(26)

and for mα = 0

bα,β(z) ∼ −δmαmβ
2Mλβrαrβ log(pzr>) ∼ −δmαmβ

2Mλβrαrβ log(pz). (27)

Second, α = j, k, β = i, �, i 	= j (different centres). Then for mα = mβ

bα,β(z) ∼ −21−2|mα |Mλβr1+|mα |
α r

1+|mα |
β

(|mα|!)2
p2|mα |

z log(|aj − ai |pz) (28)

and for mα 	= mβ

bα,β(z) ∼ (−1)mα−mβ s(mα − mβ)s(mα)s(mβ) exp
(
iϕaj −ai

(mβ − mα)
)

2|mα−mβ |−|mα |−|mβ |Mλβ

r1+|mα |
α r

1+|mβ |
β

(|aj − ai |)|mα−mβ | (29)

(|mα − mβ | − 1)!

|mα|!|mβ |! (pz)
|mα |+|mβ |−|mα−mβ |.

Let us now apply these general results for bound states to different cases.

4.1. Conditions for the bound state for a single projector

The Hamiltonian H0 + λ|ξ 〉〈ξ | can support at most one bound state and supports it if

0 >
1

λ
> 〈ξ |G0(0)|ξ 〉.
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The relations [13]

J−m(z) = (−1)mJm(z) H
(1)
−m(z) = (−1)mH(1)

m (z)

clearly verify that the energy does not depend on the sign of m. This result can be obtained
more generally from equation (2).

Equation (16) and, for |m| > 0, equations (20)–(21) prove that H0 + λr2|r,m〉〈r,m| is
able to support a bound state if

λ < λc = − |m|
Mr2

. (30)

For m = 0, equation (22) must be used in place of equation (21) and since then
limz→0 z2J0(z)H

(1)
0 (z) = 0, equation (30) remains true for m = 0. The fact that for m = 0,

a bound state can exist for λ < 0 arbitrary close to 0 should be contrasted with the three-
dimensional case where the critical value for s partial wave (� = 0) is [2] strictly negative,
−1/(2Mr2).

At this stage, it is of interest to compare the energy of the bound state in two and three
dimensions for the same values of the parameters. It has been shown in [3] that the band
structure of lithium can be reasonably reproduced with λ = −0.398 909 and r = 1.817 6943
and an appropriate choice for the lattice constant. It has also been found [3] that for these
particular values of the parameters λ and r the bound state energy for a single centre s state
is −0.217 17. Using the same values of these parameters λ and r for comparison, the present
two-dimensional model gives a bound state energy equal to −0.295 308 for m = 0.

For future illustration of the magnetic field effect in the last section, we shall consider
the λ values which for the mass parameter M = 1, and the range parameter r = 1, give a
bound state energy equal to −1 for |m| = 0, 1, . . . , 5. These values are obtained by solving
the equation 1

λ
= 〈r,m|G0(−1)|r,m〉. They are

|m| 0 1 2 3 4 5
λ|m| −1.335 05 −1.769 66 −2.485 21 −3.337 05 −4.2539 −5.202 68.

(31)

4.2. Bound states in a finite linear chain

4.2.1. The case m = 0 only. The Hamiltonian with K centres and K projectors can be written
as

KH 0 = p2

2M
+ λ

K∑
j=1

∣∣ξ 0
j

〉〈
ξ 0
j

∣∣ ∣∣ξ 0
j

〉 = exp(−ijLpx)r|r, 0〉.

There is in this case a one-to-one correspondence between centres and projectors and the
Greek indices can be replaced by Latin indices. In the zero energy limit, the diagonal terms of
the matrix b are given by equation (25). The behaviour of the non-diagonal terms is obtained
from equation (27):

bij (z) = −2Mλr2 log(|j − i|Lpz).

Both diagonal and non-diagonal terms have logarithmic divergence as z goes to zero. After
division of each matrix element by 2Mr2λ log(pz) and with x ≡ 1/ log(pz), the condition
for the bound state in the limit of zero energy reads limx→0 det(f (x)) = 0 with the matrix
elements of the symmetric matrix f (x) equal to

(f (x))ii = −1 + x

(
1

2Mr2λ
− log(r)

)
(f (x))ij = −1 − x log(|β − α|L) = −1 − x log(L) − x log(|j − i|),
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with |j − i| = 1, 2, . . . the absolute value of the difference between the indices of two different
centres. The condition limx→0 det(f (x)) = 0 is thus equivalent to the requirements that, in
the limit where x goes to zero, 1 − x

(
1

2Mr2λ
− log(r)

)
be the eigenvalue of the matrix g(x)

with zero diagonal elements and non-diagonal elements equal to those of the matrix f (x). Let
γk(x) be the eigenvalues of g(x), so that the critical values λk where a bound state appears or
disappears are now given by

1

λk

= 2Mr2 lim
x→0

(
1 − γk(x)

x
+ log(r)

)
. (32)

The matrix g(x) can be decomposed as

g(x) = g0(x) − xh,

where g0(x) is a matrix with diagonal terms equal to zero and −1 − x log(L) for all the
non-diagonal terms, and where h a matrix with diagonal terms equal to zero and

hij = log(|j − i|) for i 	= j. (33)

The matrix g0(x) has two eigenvalues, (K − 1)(−1 − x log(L)), which is non-degenerated,
and 1 + x log(L), which has a degree of degeneracy equal to K − 1. In the limit where
x goes to zero, (1 − γk(x))/x on the right-hand side of equation (32) thus diverges for the
non-degenerated eigenvalue, and therefore λ = 0 is the critical value where the first bound
state appears or disappears. Since we are concerned with the limit where x goes to zero, the
exact results for the other eigenvalues of g(x) can be obtained from the first-order degenerate
perturbation theory. The matrix �−1g0(x)� is diagonal with the first diagonal term equal to
the non-degenerated eigenvalue, the other diagonal terms equal to the degenerated eigenvalue,
for the matrix � defined as follows. The matrix elements of the first column of � are equal
to unity and, for example, the matrix elements of the first line of � are equal to unity, the
diagonal matrix elements except the first one are equal to minus unity, all the other matrix
elements being equal to zero,

�i1 = 1 = �1i �i>1,j>1 = −δij .

The inverse �−1 of � can be evaluated,

(�−1)i 	=j = 1

K
= (�−1)11 (�−1)i>1,i = −1 +

1

K
.

Degenerated perturbation theory tells us that the perturbation has to be diagonalized in the
subspace spanned by the eigenvectors of the unperturbed operator. We therefore introduce the
submatrix U of order K − 1 of �−1h� whose matrix elements are defined by

Uij = (�−1h�)i−1,j−1.

The non-zero critical value of λ is thus finally given by

1

λk

= 2Mr2
(

log
( r

L

)
+ uk

)
, (34)

with uk the eigenvalues of the matrix U of order K − 1. We stress that these critical values λk

are exact, although we use the first-order perturbation theory, because we are concerned with
the limit where x goes to zero.

For example, for M = r = 1, L = 3,m = 0 and a linear chain with four centres the
critical values are 0,−0.197 446,−0.402 43,−0.654 876.
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Figure 1. m = 0. Normalized probability density for the four states of a linear chain with four
centres. A, B, C, D in order of increasing energy (see the text).

Figure 1 reports the graphs of the four normalized probability densities for λ slightly
smaller than the last critical value, λ = −0.66. The eigenvalues of the Hamiltonian are
−0.364 722,−0.282 859,−0.154 874, −0.002 725 88. The first graph is for the state of
lowest energy, and then successively in order of increasing energy.

4.2.2. The case m 	= 0 and only one sign for m. The Hamiltonian with K centres and K
projectors can be written as

KHm = p2

2M
+ λ

K∑
j=1

∣∣ξm
j

〉〈
ξm
j

∣∣ ∣∣ξ 0
j

〉 = exp(−ijLpx)r|r,m〉.

In this case also there is a one-to-one correspondence between centres and projectors. In the

zero energy limit, the diagonal terms of the matrix b are given by equation (24), 1 + Mλr2
α

|mα | . The
behaviour of the non-diagonal terms is obtained from equation (28):

bαβ(0) = −λr2〈r,m| exp(iapx)G0(0)|r,m〉 = 0.

One concludes that all the K bound states appear or disappear for the same one centre critical
value λ = − |m|

Mr2 . This situation should be contrasted with the preceding case m = 0 where
different bound states appear or disappear for different critical values.

Figure 2 reports the graphs of the four normalized probability densities for λ slightly
smaller than the unique critical value, λ = −1.1,M = r = 1, L = 3,m = 1. The eigenvalues
of the Hamiltonian are −0.107 234,−0.083 3678,−0.054 413,−0.029 2872. The first graph
is for the state of lowest energy, and then successively in order of increasing energy.
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Figure 2. m = 1. Normalized probability density for the four states of a linear chain with four
centres. A, B, C, D in order of increasing energy (see the text).

4.2.3. The case m 	= 0 and two signs for m. For a given centre j , both projectors with m > 0
and m < 0 are now present. Let [u] denote the integer part of u, px the x component of the
momentum and L the distance between two consecutive centres of the chain on the x axis. The
Hamiltonian with K centres and 2K projectors can be written as

2KH |m| = p2

2M
+ λ

K∑
j=1

∣∣ξm
j

〉〈
ξm
j

∣∣ +
∣∣ξ−m

j

〉〈
ξ−m
j

∣∣
= p2

2M
+ λ

2K∑
α=1

|ξα〉〈ξα|

|ξα〉 = exp

(
−i

[
α + 1

2

]
Lpx

)
r|r, (−1)α|m|〉.

In the zero energy limit, the diagonal terms of the matrix b are given by equation (24), and for
the non-diagonal terms one obtains from equations (28), (29)

bαβ(0) = −λr2〈r,m| exp(iapx)G0(0)|r,m〉 = 0

bαβ(0) = −λr2〈r,m| exp(iapx)G0(0)|r,−m〉
= (−1)mMλr2 (|2m| − 1)!

(|m|!)2

( r

a

)2|m|
,

where a denotes the distance between the projectors α and β.
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Some algebra then shows that the equation det(b(0)) = 0 reduces to the condition that

(−1)m+1 (|m|!)2

(|2m| − 1)!

(
L

r

)2|m| ( 1

Mλr2
+

1

|m|
)

be an eigenvalue of the following symmetric matrix of order 2K:

0 0 0 1 0 2−2|m| 0 3−2|m| . . .

0 0 1 0 2−2|m| 0 3−2|m| 0 . . .

0 1 0 0 0 1 0 2−2|m| . . .

1 0 0 0 1 0 2−2|m| 0 . . .

0 2−2|m| 0 1 0 0 0 1 . . .

2−2|m| 0 1 0 0 0 1 0 . . .

0 3−2|m| 0 2−2|m| 0 1 0 0 . . .

3−2|m| 0 2−2|m| 0 1 0 0 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

With tk the eigenvalues of this matrix, the critical values λk for which a new bound state
appears or disappears are given by

1

λk

= −Mr2

|m|
[
(−1)m

(|2m| − 1)!|m|
(|m|!)2

( r

L

)2|m|
tk + 1

]
. (35)

For example, for M = r = 1, L = 3, |m| = 1 and a linear chain with four
centres (eight projectors) the critical values are −0.827 037,−0.863 115,−0.921 083,
−0.966 055,−1.036 42,−1.093 71,−1.188 49, −1.264 44.

Figure 3 reports the graphs of the eight normalized probability densities for λ slightly
smaller than the last critical value, λ = −1.3. The eigenvalues of the Hamiltonian are
−0.520 908,−0.379 859,−0.358 059, −0.303 785,−0.224 693,−0.144 763,−0.174 565,
−0.004 578 01. The first graph is for the state of lowest energy, and then successively in
order of increasing energy from left to right.

5. Scattering

General formulation of scattering theory in two dimensions has been discussed elsewhere
[16–18]. For the sake of self-consistency we briefly indicate some basic results. Since
scattering theory is more familiar in the three-dimensional case, we parallel the results for
three- and two-dimensional cases.

Let us begin with notations and definitions valid in both two and three dimensions. The
scattering matrix is denoted by S as usual. The T (z) operator is related to the interaction V

and to the resolvent G(z) = (z − H)−1 by

T (z) = V + V G(z)V .

The on-shell matrix elements of T (z) are denoted by

t (p′ ← p) = lim
ε→0

〈p′|T
(

p2

2M
+ iε

)
|p〉,

with p = p′. The relation with the S matrix elements is

〈p′|S|p〉 = δ(p′ − p) − 2π iδ(Ep − Ep′)t (p′← p).

The stationary scattering states |p+〉 are defined by

|p+〉 = |p〉 + lim
ε→0

G

(
p2

2M
+ iε

)
V |p〉.
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Figure 3. m = ±1. Normalized probability density for the eight states of a linear chain with four
centres. A, B, C, D, E, F, G, H in order of increasing energy (see the text).

For all these results, see e.g. [19]. We now turn to results specific to each dimension. A list
of formulae is now given for the three-dimensional case and the two-dimensional case. Each
formula for the three-dimensional case is immediately followed by the corresponding formula
for the two-dimensional case..

The scattering amplitude f is defined from the asymptotic behaviour (r → ∞) of the
stationary scattering wavefunctions,

〈r|p+〉 ∼ 1

(2π)3/2

{
exp(ip · r) + f (p̂r← p)

exp(ipr)

r

}
〈r|p+〉 ∼ 1

2π

{
exp(ip · r) + f (p̂r← p)

exp(ipr)√
r

}
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f (p′← p) = −(2π)2Mt(p′← p)

f (p′← p) = −exp
(

i
π

4

)
(2π)3/2M

√
1

p
t(p′← p).

The analogue of the three-dimensional scattering cross section σ will be called the scattering
cross length, to be denoted by l,

dσ

d�
= |f (p′← p)|2 dl

dϕ
= |f (p′← p)|2. (36)

For interaction invariant under rotation, partial wave analysis is very convenient.

f (p′← p) =
∞∑

�=0

(2� + 1)f�(p)P�(p̂′ · p̂)

f (p′← p) =
∞∑

m=−∞
exp(im(ϕp′ − ϕp))fm(p)

f�(p) = exp(iδ�(p)) sin(δ�(p))

p

fm(p) =
√

2

π
exp

(
i
π

4

)√
1

p
exp(iδm(p)) sin(δm(p))

σ (p) =
∫ π

0
dθ

∫ 2π

0
dφ|f (p′← p)|2 = 4π

∞∑
�=0

(2� + 1)|f�(p)|2 =
∞∑

�=0

σ�(p)

l(p) =
∫ 2π

0
dφ|f (p′← p)|2 =

∞∑
m=−∞

2π |fm(p)|2 =
∞∑

m=−∞
lm(p)

(37)

σ�(p) = 4π(2� + 1)
sin2(δ�(p))

p2
� 4π(2� + 1)

p2

lm(p) = 4

p
sin2(δm(p)) � 4

p
.

(38)

Finally, the optical theorem

Im[f (p ← p)] = p

4π
σ(p)

Re
[
exp

(
i
π

4

)
f (p ← p)

]
= −1

2

√
p

2π
l(p).

(39)

It should be noted that a different definition of the scattering amplitude yields [18] a
formulation of the optical theorem in two dimensions which looks like to the one in three
dimensions.

5.1. Scattering by a single centre

The interaction reduces to

V =
∑
m

λm(rm)2|rm,m〉〈rm,m|. (40)
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It has to be noted that the superscript m is an index and not a power. The T operator and partial
wave scattering amplitude are

T (z) =
∑
m

(rm)2|rm,m〉〈rm,m|
1

λm − (rm)2〈rm,m|G0(z)|rm,m〉

fm(p) = −exp
(

i
π

4

)(
2

π

)1/2
√

1

p

(Jm(prm))2

1
λmMπ(rm)2 + iJm(prm)H

(1)
m (prm)

.

Equation (37) or (39) gives

l(p) = 4

p

∑
m

∣∣∣∣∣ (Jm(prm))2

1
λmMπ(rm)2 + iJm(prm)H

(1)
m (prm)

∣∣∣∣∣
2

.

Equations (20)–(22) show that

lim
p→0

lm(p) =
{∞ if m = 0

0 if m 	= 0.

For m = 0, the result should be contrasted with the three-dimensional result where the
scattering section remains finite. A divergence of the cross length at zero energy has also been
found [16] for scattering by a ‘hard circle’. For m 	= 0, the explanation in terms of classical
mechanics is the same: in the limit of zero energy, the angular momentum r ∧ p tends to zero.

Let us finally consider the limit of infinite strength parameter:

lim
λm→±∞

lm(p) = 4

p

∣∣∣∣∣ Jm(prm)

H
(1)
m (prm)

∣∣∣∣∣
2

. (41)

Since H(1)
m (pr) = Jm(pr) + iYm(pr) [12] with both Jm(pr) and Ym(pr) real, it is clear that

the unitary bound given in inequality (38) is satisfied. It should be noted that the right-hand
side of equation (41) is exactly the cross length for scattering by a ‘hard circle’ [16].

Figure 4 reports the total cross length for a particle of mass unity for the two cases:

V∓ =
5∑

m=−5

−(|m| ∓ 0.3)|r = 1,m〉〈r = 1,m| (42)

and for the case where λ is infinite. For V− the λm values −(|m| − 0.3) are slightly larger than
the critical values −|m| (see equation (30)), and the cross length exhibits resonances. The
sharpest ones at the largest energy correspond to ±m = 5, and then, in order of decreasing
energy, with increasing widths, ±m = 4, 3, 2, 1. The broadest resonance corresponding to
±m = 1 is almost invisible. It is recalled that at zero energy, the cross length diverges. For
more detailed explanations and for scattering by more complex systems, the methods of [2]
can be generalized.

6. The one-centre problem in a uniform magnetic field

The Hamiltonian is
(
p − e

c
A
)2/

2M +V , with e the algebraic charge of the particle, c the speed
of light and V the interaction given by equation (40). The magnetic field B is perpendicular
to the plane and therefore (B ∧ r)2 = B2r2. With the gauge choice

A = 1
2 B ∧ r.
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Figure 4. Ordinate: cross length l for scattering by one centre. Abscissa: the momentum of the
particle. Solid curve: interaction V−, equation (42). Dashed curve: interaction V+, equation (42).
Thick grey curve: limit λ → ±∞.

A belongs to the plane and p · A = A · p = �B/2 with � given by equation (1). The
Hamiltonian is thus a two-dimensional one and reads [20]

H = H0B + V

H0B = p2

2M
− eB

2Mc
� +

e2B2

8Mc2
r2

= p2

2M
− ω

2
� +

Mω2

8
r2

with

ω = eB

Mc

the algebraic cyclotron angular frequency. The spatial matrix elements of the resolvent

G0B(z) ≡ 1

z − H0B

can be expanded in partial wave:

〈r2|G0B(z)|r1〉 =
∞∑

m=−∞

exp(im(ϕ2 − ϕ1))

2π
〈r2,m|G0B(z)|r1,m〉.

The partial wave matrix elements will be determined from the differential equation(
z −

{
−

∂2

∂r2 + 1
r

∂
∂r

+ 1
r2 (−m2)

2M
− ω

2
m +

Mω2

8
r2

})
〈r,m|G0B(z)|r1,m〉 = δ(r − r1)

r1
,

with appropriate boundary conditions.
The change of variable, of function and of parameter [20],

ζ = |e|B
2c

r2 = M|ω|
2

r2 (43)

f (ζ, ζ1) = 〈r,m|G0B(z)|r1,m〉
κ = Mz

c

|e|B +
e

|e|
m

2
= z

|ω| +
e

|e|
m

2
, (44)
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yields (
ζ

∂2

∂ζ 2
+

∂

∂ζ
+

[
−m2

4ζ
+ κ − ζ

4

])
f (ζ, ζ1) = Mδ(ζ − ζ1).

The further change of function g = √
ζf

√
ζ1 yields{

∂2g

∂ζ 2
+

[
−1

4
+

κ

ζ
+

1
4 − m2

4

ζ 2

]
g

}
= Mδ(ζ − ζ1). (45)

This equation is a particular case of the Sturm–Liouville problem, and a solution for g can be
expressed [14, 15] in terms of two linearly independent solutions g1, g2 of the homogeneous
equation, and of their Wronskian W(g1, g2) = g1g

′
2 − g′

1g2:

g = M
g1(ζ<)g2(ζ>)

W(g1, g2)
.

The homogeneous equation (ζ 	= ζ1) is Whittaker’s differential equation. A solution regular
at origin is Mκ,

|m|
2
(ζ ), and a linearly independent solution decreasing exponentially at infinity

is Wκ,
|m|
2
(ζ ). The Wronskian W is [21]

W
(
Wκ,

µ

2
,Mκ,

µ

2

) = (1 + µ)


( 1+µ

2 − κ
) .

The final result then is

〈r,m|G0B(z)|r1,m1〉 = −δmm1M

( 1+|m|

2 − κ
)

(1 + |m|)
Mκ,

|m|
2
(ζ<)

√
ζ<

Wκ,
|m|
2
(ζ>)

√
ζ>

, (46)

with ζ given by equation (43) and κ by equation (44).
At this point it may be of interest to recall that a beautiful analytic result for the full Green

function 〈r|G0B(z)|r1〉 has been obtained by Dodonov et al [22]. Equation (46) represents a
Fourier component of 〈r|G0B(z)|r1〉. Explicitly,

〈r,m|G0B(z)|r1,m〉 =
∫ 2π

0
〈r|G0B(z)|r1〉 exp(−im(ϕ − ϕ1)) d(ϕ − ϕ1)

= − M

2π


(
1

2
− z

|ω|
)∫ 2π

0
exp

[
i

(
Mω

2
rr1 sin(ϕ) − mϕ

)]
W z

|ω| ,0
(

M|ω|
2

(
r2 + r2

1 − 2rr1 cos(ϕ)
))√

M|ω|
2

(
r2 + r2

1 − 2rr1 cos(ϕ)
) dϕ.

Figure 5 reports the energies as functions of the magnetic field intensity B (measured in
units of |ω|) for the following Hamiltonian:

H = H0B +
5∑

m=−5

λ|m||r = 1,m〉〈r = 1,m|,

with M = 1, e = −1 and λ|m| defined by the numerical values given in equation (31). It is
recalled that these values have been computed in order that all eigenvalues of the Hamiltonian
are degenerated at zero field where they take the value −1. For each m value, the energy E is
determined as the root of

1

λ|m| = r2〈r,m|G0B(E)|r,m〉.
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Figure 5. Energies as a function of the magnetic field intensity in unit of |ω| (see the text).
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Figure 6. Enlarged view of figure 5 for m � 0 (see the text).

One clearly sees a linear behaviour for small field, asymptotics to linear atomic Zeeman effect,
E = −1 + m|ω|/2. At the other limit B → ∞, the 11 energy levels are asymptotic to the 6
Landau levels |m + 1/2||ω|. Specifically, the highest level, m = 5, is asymptotic to (11/2)|ω|,
the m = 4 level to (9/2)|ω|, the m = 3 level to (7/2)|ω|, the m = 2 level to (5/2)|ω|, and the
m = 1 level to (3/2)|ω|. The six other levels, from m = 0 to m = −5 in order of decreasing
energy, all are asymptotic to the ground state Landau level, |ω|/2. An enlarged view for these
six levels corresponding to m � 0 is reported in figure 6 for a better visualization.

7. Discussion and conclusion

The present model can be applied to study the spectrum of finite two-dimensional complex
systems involving arbitrary geometrical configurations: truncated periodic, truncated quasi-
periodic, disordered. It can also be applied to the study of collisional processes involving
two-dimensional targets with complex geometrical configurations, or for analysing wave
packets time evolution on plane nano-structures. The flexibility of this model relies also on
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the possibility of choosing not only the geometrical configuration of the system, but also the
parameters of each centred interactions. The strength parameters λk

j , range parameters rk
j ,

angular momentum parameters mk
j can be varied at will (with the restriction of non-overlapping

interactions) and in an independent way.
For very large systems, the numerical search of zeros which is necessary for the

determination of density of states may become difficult due to numerical precision effects.
In that case, qualitative information on the statistic of the energy levels distribution could be
obtained by solving the eigenvalue problem not for the energy, but for the strength parameters
λk

j with zero energy as boundary condition. The practical solution of this problem indeed
reduces to the numerical determination of eigenvalues of Hermitic large matrices with very
simple matrix elements, a task much easier than the search of zeros of determinants of Hermitic
large matrices with matrix elements involving Bessel functions.

The present model could also be used to study of time-dependent phenomena. The
determination of energy surfaces as a function of the geometrical parameters without too
much numerical efforts should indeed be of interest for model studies of geometrical phase
effects (Berry’s adiabatic phase and Aharonov–Anandan phase). In this context the inclusion
of a time-dependent uniform magnetic field would be of special interest. At present however,
in the presence of non-zero uniform magnetic fields, an analytic expression for the matrice
elements of the resolvent has been obtained only for matrices elements involving the same
centre (equation (46)).

Finally, it has to be noted that two-dimensional physics is relevant not only for surface
physics but also for other systems such as electrons in semiconductor heterojunctions which
can exhibit two-dimensional or quasi-two-dimensional behaviour [23].

Appendix. Evaluation of a class of integrals

We shall prove the following property.

(i) If n and f have the same parity (i.e. n even number and f even function or n odd number
and f odd function),

(ii) if f is holomorphic in the upper half plane, and
(iii) if, in the limit of infinite radius R, the integral along a semicircle D centred at the origin

and located in the upper half plane,
∫
D

dz
zH

(1)
n (az)f (z)

z2−z2
0

→ 0,

then for a > 0, and z0 the squared root of z2
0 with positive imaginary part:∫ ∞

0
dz

zJn(az)f (z)

z2 − z2
0

= π i

2
H(1)

n (az0)f (z0).

As the integrand is odd, the procedure used in [2] for which even integrand g yields∫ ∞
0 dz g(z) = 1

2

∫ ∞
−∞ dz g(z) cannot be applied. To proceed further, let us consider the

following integral:

AR =
∫

CR

dz
zH(1)

n (az)f (z)

z2 − z2
0

,

where CR is the closed contour from −R to R and the upper semicircle of radius R. In the
interval [−R, 0], the value of H(1)

n is the one obtained by continuity from the upper plane
above the cut ] −∞, 0[ pertaining to the function H(1)

n . Then, within the hypotheses of the
property, the residue theorem yields

lim
R→∞

AR = 2π i
z0H

(1)
n (az0)f (z0)

2z0
=

∫ ∞

−∞
dz

zH(1)
n (az)f (z)

z2 − z2
0

.
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Splitting the integral into
∫ 0
−∞ + · · · +

∫ ∞
0 , changing z into −z in the integral from −∞ to 0:

π i
z0H

(1)
n (az0)f (z0)

z0
= −

∫ ∞

0
dz

zH(1)
n (−az)f (−z)

z2 − z2
0

+
∫ ∞

0
dz

zH(1)
n (az)f (z)

z2 − z2
0

.

Noting [12] that for az > 0,

H(1)
n (−az) = (−1)n

[
H(1)

n (az) − 2Jn(az)
]

one obtains taking into account that f and n have the same parity

π i
z0H

(1)
n (az0)f (z0)

z0
= 2

∫ ∞

0
dz

zJn(az)f (z)

z2 − z2
0

,

which gives the final result.
Equations (16) and (17) then follow because

(i) the relation

Jm(−z) = (−1)mJm(z)

ensures that condition 1 of the property is satisfied.
(ii) Jm is holomorphic and therefore condition 2 of the property is satisfied.

(iii) The asymptotic behaviours

Jm(z) ∼
√

2

πz
cos

(
z − mπ

2
− π

4

)
(A.1)

H(1)
m (z) ∼

√
2

πz
exp

[
i
(
z − mπ

2
− π

4

)]
(A.2)

ensure that condition 3 of the property is satisfied.
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[21] Buchholz H 1969 The Confluent Hypergeometric Function (Berlin: Springer)
[22] Dodonov V V, Malkin I A and Man’ko V I 1975 Phys. Lett. A 51 133
[23] Tsuneya A, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437

http://dx.doi.org/10.1088/0305-4470/30/22/021
http://dx.doi.org/10.1002/(SICI)1521-3951(200105)225:1<95::AID-PSSB95>3.0.CO;2-S
http://dx.doi.org/10.1002/(SICI)1521-3951(200002)217:2<819::AID-PSSB819>3.0.CO;2-5
http://dx.doi.org/10.1103/PhysRevB.66.094202
http://dx.doi.org/10.1088/0305-4470/36/33/306
http://dx.doi.org/10.1088/0305-4470/38/22/009
http://dx.doi.org/10.1088/0305-4470/39/12/015
http://dx.doi.org/10.1007/BF01038554
http://dx.doi.org/10.1007/BF01032728
http://dx.doi.org/10.1119/1.13004
http://dx.doi.org/10.1119/1.13504
http://dx.doi.org/10.1119/1.14623
http://dx.doi.org/10.1103/RevModPhys.54.437

	1. Introduction
	2. The Hamiltonian
	3. Solution in terms of matrix elements of the resolvent
	4. Bound states problems
	4.1. Conditions for the bound state for a single projector
	4.2. Bound states in a finite linear chain

	5. Scattering
	5.1. Scattering by a single centre

	6. The one-centre problem in a uniform magnetic field
	7. Discussion and conclusion
	Appendix. Evaluation of a class of integrals
	References

